SECREL

WORK STATEMENT

will provide the necessary services and personnel to perform the following work:

25X1

PHASE I - COHERENCE MEASUREMENTS

A. Spatial Coherence

- 1. Finish measurements of spatial coherence of an optical system by using prism method.
 - a. Observe fringe pattern directly.
- 2. Use the cone method to measure spatial coherence.
 - a. Investigate feasibility of such a measurement
 - b. Determine if two-dimensional measurement of spatial coherence is useful in real world measurements of instruments.
- 3. Compare items 1 and 2 as practical methods of measuring coherence of instruments.
- B. <u>Investigation of Shaded Apertures as Filters in Conventional</u> <u>Imaging Systems</u>
 - 1. Determine and demonstrate a class of problems in which incoherent filtering is useful.
 - 2. Determine the practicality of using shaded apertures in instruments viewing grain limited imagery assuming a knowledge of the degree of coherence in the object plane.
 - a. Microscope
 - b. Viewers
 - c. Enlargers.

PHASE II - CHEMISTRY

- A. Perform Support Investigations as Specified by N.P.I.C.
 - 1. Support electron microscopy investigations
 - 2. Support N.P.I.C. in-house image quality investigations.

PHASE III - IDT SHADED APERTURE INVESTIGATION

A. Construction of an Optimum Least Squares Filter

- 1. Determine the power spectrums $\phi_{SS}(\omega)$ and $\phi_{NN}(\omega)$ of the signal and noise respectively and the cross power spectrum $\phi_{SN}(\omega)$ of the signal and noise.
 - a. Conduct experimental study
 - b. From these results find the optimum filter.
- 2. Determine the cross power spectrum of a signal and the image of the signal $\phi_{S(S+N)}(\omega)$ and the power spectrum of the image of a signal $\phi_{(S+N)(S+N)}(\omega)$.
 - a. Conduct experimental study
 - b. From these results find the optimum filter.
- 3. Compare items 1 and 2 to see if they are the same. Then decide which is the easiest way to fabricate Weiner filters for use in scanning instruments such as the IDT.
- 4. Determine which classes of objects and for which types of exploitation tasks (other than the IDT) the Weiner filter is most useful.
- B. Two-Dimensional Brightness Distribution from Objects Imaged
 Near Resolution Limit of Recording System
 - 1. Consider distortions due to brightness distribution when two or more objects of this size are imaged close together.

C. IDT Traces

- 1. Make carefully controlled IDT traces of aerial photography having ground truth.
 - a. Analyze and interpret such traces
 - b. Determine accuracy of sizing objects near the resolution limit for such measurements
 - c. Determine extent to which IDT traces of shadows are useful in sizing or identifying objects near resolution limit.

- 2. Use item A and this year's results to improve ability to interpret IDT traces of low-contrast imagery.
- D. IQ and High Magnification Viewer-Printer
 - 1. Compare IDT and IQ quantitatively.

